Fires in Silos

Hazards, Prevention, and Fire Fighting

Edited by
Ulrich Krause
Fires in Silos

Edited by
Ulrich Krause
Further Reading

Prager, F. H., Rosteck, H.

Polyurethane and Fire
Fire Performance Testing under Real Conditions
2006
ISBN: 978-3-527-30805-7

Kubota, N.

Propellants and Explosives
Thermochemical Aspects of Combustion
Second, Completely Revised and Extended Edition
2007
ISBN: 978-3-527-31424-9

Hattwig, M., Steen, H. (Eds.)

Handbook of Explosion Prevention and Protection
2004
ISBN: 978-3-527-30718-0

Meyer, R., Köhler, J., Homburg, A.

Explosives
Sixth, Completely Revised Edition
2007
ISBN: 978-3-527-31656-4
Fires in Silos

Hazards, Prevention, and Fire Fighting

Edited by
Ulrich Krause
2.4 Physical Characteristics of Self-Ignition Processes and Smoldering

Fire Propagation

Ulrich Krause

References 29

3 Fire Risk Assessment

Javier Garcia Torrent and Enrique Querol

3.1 Introduction 33

3.2 Experimental Techniques 34

3.2.1 Ignition Sensitivity 34

3.2.1.1 Minimum Ignition Temperature (MIT) 34

3.2.1.2 Minimum Explosible Concentration (Lower Explosion Limit (MEC/LEL)) 37

3.2.1.3 Minimum Ignition Energy (MIE) 37

3.2.2 Explosion Severity 37

3.2.2.1 Explosion Pressure \((P_{\text{max}})\) 37

3.2.2.2 Maximum Rate of Pressure Rise \((dp/dt)\) 38

3.2.2.3 \(K_{\text{max}}\) Specific Constant 38

3.2.3 Thermal Susceptibility 38

3.2.3.1 Maciejasz Index (MI) 39

3.2.3.2 Temperature of Emission of Flammable Volatiles (TEV) 39

3.2.3.3 Thermogravimetry (TG) Test 39

3.2.3.4 Differential Scanning Calorimetry (DSC) 40

3.2.3.5 Susceptibility Evaluation: Activation Energy \((E_a)\) 41

3.2.3.6 Susceptibility Evaluation: Characteristic Oxidation Temperature \((T_{\text{charac}})\) 43

3.2.4 Thermal Stability 43

3.2.4.1 Self-Ignition Temperature \((SIT)\) 44

3.2.5 Classification of Solid Dangerous Goods 45

3.2.5.1 Solids which are Readily Combustible 47

3.2.5.2 Substances Liable to Spontaneous Combustion 47

3.2.5.3 Substances which, in Contact with Water, Release Flammable Gases 47

3.2.5.4 Oxidizing Substances 47

3.2.6 Other Tests 48

3.2.6.1 Flammability 48

3.2.6.2 Burning Behavior 48

3.2.6.3 Grewer Oven 48

3.2.6.4 Impact Sensitivity 48

3.2.6.5 Friction Sensitivity 49

References 49

4 Explosion Risk and Protection

Kazimierz Lebecki

4.1 Essential Conditions for Explosion Occurrence 51

4.2 Parameters of Dust Explosion; Definitions 51
5.5 Heat Detectors

5.6 Application Examples

5.6.1 Fire Protection Silo in a Fiber Board Factory

5.6.2 Recycling of Metal Parts, for example Car Residues

5.6.3 Feeding Line of a Silo Plant with 24 Silo Cells

5.6.4 Silo of a Biomass Power Station

References

6 Case Studies

David Westermann and Rolf Eckhoff

6.1 Fire in a Silo for Wood Pellets in Esbjerg, Denmark, 1998–1999

David Westermann

6.1.1 Summary

6.1.2 Background

6.1.2.1 Siting of the Silo

6.1.2.2 Fire and Rescue Services in Esbjerg

6.1.2.3 The Silo Building

6.1.2.4 Construction

6.1.2.5 Emptying and Filling

6.1.2.6 Instrumentation

6.1.2.7 Explosion Venting

6.1.2.8 Description of Contents

6.1.2.9 Wood Pellets

6.1.3 Normal Extinguishing Practice

6.1.3.1 Fires in Grain and Animal Food Silos

6.1.3.2 Fires in Wood-Containing Silos

6.1.4 Incident Chronology

6.1.4.1 Day 1 – Initial Confusion

6.1.4.2 Day 2 – Initial Problems

6.1.4.3 Day 3 (Saturday) – Further Problems

6.1.4.4 Day 4 – Further Precautions

6.1.4.5 Day 5 – Further Problems

6.1.4.6 Day 6

6.1.4.7 Day 7

6.1.4.8 Day 8

6.1.4.9 Day 9

6.1.4.10 Day 10

6.1.4.11 Day 11

6.1.4.12 Day 12

6.1.4.13 Day 13

6.1.4.14 Day 14

6.1.4.15 Day 15

6.1.4.16 Day 16

6.1.4.17 Day 17

6.1.4.18 Day 18
6.1.4.19 Day 19 103
6.1.4.20 Day 20 103
6.1.4.21 Day 21 104
6.1.4.22 Day 22 104
6.1.4.23 Day 23 104
6.1.4.24 Day 24 104
6.1.4.25 Day 25 104
6.1.4.26 Day 26 105
6.1.4.27 Day 27 105
6.1.4.28 Day 28 105
6.1.4.29 Day 29 105
6.1.4.30 Day 30 105
6.1.5 Problems Arising 107
6.1.5.1 Unexpected Explosions 107
6.1.5.2 Fire Spread from Cell to Cell 107
6.1.5.3 Compacting of Silo Contents 107
6.1.5.4 Difficulties with Emptying Cells 107
6.1.5.5 Breakdown of Ancillary Services 107
6.1.5.6 Measurements 108
6.1.5.7 Weather 108
6.1.5.8 Access Lofts 109
6.1.5.9 Personnel 109
6.1.6 Costs and Material Usage 110
6.2 Further Case Studies 110
Rolf K. Eckhoff
6.2.1 Smoldering Gas Explosion in a Large Storage Facility for Grain and Feedstuffs in Tomylovo in the Kuibyshev Region of USSR 110
6.2.2 Smoldering Gas Explosion and Subsequent Successful Extinction of Smoldering Combustion in Pelletized Wheat Bran in a Silo Cell at Nord Mills, Malmö, Sweden, in 1989 112
6.2.3 Extinction Using Water of Smoldering Fire in a Fish Meal Silo in Norway in 1992 114
References 115

7 Fighting Silo Fires 117
Ulrich Hoischen, Jörg Kayser, and translated by Ulrich Krause
7.1 Introduction 117
7.2 Inert Gases for Silo Fire Fighting 119
7.3 Nitrogen 120
7.4 Carbon dioxide 120
7.5 Fighting a Silo Fire in an Animal Food Production Plant 121
7.5.1 Description of the Situation 121
7.5.2 State Before the Fire 121
7.5.3 Outbreak of the Fire 121
7.5.4 Fire Fighting 122
7.5.5 Emptying the Silo Cell 123
7.5.6 Summary and Conclusion 124
7.6 Test Inertization of a Malt Silo 124
7.6.1 Description of Situation 124
7.6.2 Estimating the Necessary Amount of Inert Gas 125
References 125

8 Necessary Fire Prevention Measures for Silos with Flammable Solid
Bulk Materials in Connection with Inerting During a Fire 127
Ulrich Hoischen, Jörg Kayser, and translated by Ulrich Krause
8.1 Inerting of Silos with Flammable Solid Bulk Materials in Case
of Fire 127
8.2 Recommendations for Construction, Processing and Operation 128
8.2.1 Construction 128
8.2.2 Measures During Processing and for Fire Detection 129
8.2.3 Operational Measures 129
8.3 Measures in Case of Fire 131
8.3.1 Alerting 131
8.3.2 General Measures 131
8.3.3 Sealing of the Silo 132
8.3.4 Inerting and Concentration Measurements 132
8.3.5 Emptying the Silo 132
8.4 Summary 133

9 Predictive Tools for Hazard Assessment of Self-Ignition 135
Ulrich Krause
References 138

Index 139
Preface

This book is addressed first of all to engineers who work as plant designers or operators or in management in the process industries, in energy conversion, in recycling, in the woodworking industry or in the food industry where large amounts of flammable bulk materials are stored in silos. It is intended to provide a background of knowledge of the fire hazards in silo storage facilities together with recommendations for fire prevention and protection.

A second group which may be interested in this book are fire fighters. As all the experience gathered in some case studies of this book shows, fire fighting in large storage facilities is always a big challenge to those concerned. Large masses of flammable materials involved in the fire, huge emissions of heat, smoke and potentially harmful gases and awkward access to the fire sites lead to extensive, difficult, risky, time-consuming and costly fire fighting missions.

Therefore, the main focus should always be on preventing fires in silos. This can be achieved when plant operators are well aware of

- the hazards linked with the flammable materials they store or handle,
- the hazards resulting from processing itself, for example the appearance of explosive atmospheres and ignition sources,
- technical and operational measures which can reduce the probability of a fire or an explosion to occur or mitigate their consequences to protect people, equipment and the environment.

Finally, responsible authorities supervising storage facilities may be interested in this book as well to use it as a condensed knowledge base for a complex problem. That is why the purpose of the present book is

- to raise awareness of the fire hazard in storage facilities and the eventually disastrous consequences of such fires including losses of life and economic bankruptcy,
- to transmit lessons learned in previous incidents,
- to spread the expertise gathered by the contributors of this book to those confronted with the problem.

However, it seems impossible to reduce the risk of a fire to zero. The present book attempts to summarize the state of the art of technical and administrative precau-
tions to be taken, first of all to prevent incidents or – if they occur – to allow an effective fire fighting.

Most of the preventive and protective measures apply to storage of flammable bulk materials in facilities other than silos as well, for example heaps or free deposits or storage in bunkers.

The presentation of knowledge in this book is more on a technical than on a scientific level to ease readability. Mathematics has been reduced to an absolute minimum.

The board of authors of this book comprises fire investigators, researchers, fire consultants and providers of fire protection equipment. All authors have a long-term experience in the field. It is our strong desire that this book may help to prevent these specific kinds of events or at least to facilitate bringing them under control.

It is the strong wish of the editor to sincerely thank everybody who has contributed to this book. This includes the authors for providing their unique expertise and experience and the publisher, Wiley-VCH, for the professional treatment of the manuscript and for the patience with the editor when doing his part of the work and last but not least the editor’s beloved family giving him the freedom and time for writing and editing.

Bergholz-Rehbrücke, Germany

Ulrich Krause
1 Introduction

Ulrich Krause

1.1 Problem Description

In industry and transportation silos serve as containers for storing bulk materials or
dusts. Volumes of silos range from a few cubic meters as supply silos in process
chains to some thousand cubic meters for storing fuels, grain or sugar, for example.
Recently, in Europe some coal storage silos have been erected storing up to
50,000 tons of coal.

Many silos are of cylindrical shape but there are also silos with rectangular cross
section or those formed by the intermediate space between adjacent cylindrical silo
cells. As will be explained below, silo size and shape affect fire appearance and
fighting.

Silo batteries – an arrangement of up to 100 or more single silo cells on one site –
offer storage capacities for dozens of thousands of tons of material.

About 80% of bulk materials are flammable, among them those which are stored in
large masses like grain or other crops. Hence, in the case of a fire the release of an
enormous amount of energy has to be expected, which endangers the static integrity
of the structure and makes fire fighting extremely difficult. In addition, huge
emissions of smoke and flue gases impede the access to the fire site and harm the
environment.

Besides the fire itself the hazard of an explosion has to be taken into account
when flammable bulk materials are stored in silos. Fine particles may be
contained in the bulk material or are produced by abrasion during handling.
When these fine particles are dispersed in air as may happen during filling or
emptying the silo, eventually an explosive dust cloud is formed in the interior of
the silo. If an ignition source of sufficient energy is then in place a dust explosion
is likely to occur.

Another explosion hazard results from flammable gases. Under the action of
a heat source many organic bulk materials undergo thermal decomposition
(pyrolysis) whereby flammable gases like carbon monoxide, methane, propane