DIFFERENTIAL GEOMETRY FOR PHYSICISTS

Bo-Yu Hou
Bo-Yuan Hou

World Scientific
DIFFERENTIAL GEOMETRY FOR PHYSICISTS
ADVANCED SERIES ON THEORETICAL PHYSICAL SCIENCE
A Collaboration between World Scientific and Institute of Theoretical Physics

Series Editors: Dai Yuan-Ben, Hao Bai-Lin, Su Zhao-Bin
(Institute of Theoretical Physics Academia Sinica)

Vol. 1: Yang-Baxter Equation and Quantum Enveloping Algebras
(Zhong-Qi Ma)

Vol. 6: Differential Geometry for Physicists
(Bo-Yu Hou & Bo-Yuan Hou)

Forthcoming:
Geometric Methods in Physics (Wu Yong-Shi)
Special Relativity and its Experimental Foundation (Zhang Yuan-Zhong)
Liquid Crystal Models of Biomembranes (Ouyang Zhong-Can, Xie Yu-Zhang
and Liu Ji-Xing)
Group Theory for Condensed Matter Physics (Tao Rui-Bao)
Contents

Preface xi

1 Differentiable Manifolds and Differential Forms 1
 1.1 Manifold ... 1
 1.2 Differentiable manifold .. 7
 1.3 Tangent space and tangent vector field 15
 1.4 Cotangent vector field .. 20
 1.5 Tensor product, exterior product and various higher order tensor fields 24
 1.6 Exterior differentiation .. 32
 1.7 Orientation and Stokes formula 37
 Notations and formulae ... 41
 Exercises .. 43

2 Transformation of Manifold, Manifolds with Given Vector Fields and Lie Group Manifold 45
 2.1 Continuous mapping between manifolds and its induced mapping ... 45
 2.2 Integral submanifold and Frobenius theorem 48
 2.3 Integrability of differential equations and Frobenius theorem in terms of differential forms 52
 2.4 The flow of vector fields, one parameter local Lie transformation groups and Lie derivative 58
 2.5 Lie group, Lie algebra and exponential map 65
 2.6 Lie transformation groups, orbit and the space of orbits 73
 Notations and Formulae ... 79
 Exercises .. 81

3 Affine Connection and Covariant Differentiation 83
 3.1 Moving frame approach to tensor field 83
 3.2 Affine connection and covariant differentiation 85
 3.3 The curvature 2-form and the curvature tensor 91
 3.4 Torsion tensor .. 93
 3.5 Covariant exterior differential 98
 3.6 Holonomy group of connections 101
3.7 Berry phase, holonomy in physical system .. 102
Notations and Formulae ... 105
Exercises ... 106

4 Riemannian Manifold .. 107
4.1 Metric tensor field, Hodge star and codifferentiation 107
4.2 Riemannian connection ... 119
4.3 Riemannian curvature ... 122
4.4 Bianchi identity and Einstein field equation of gravity 125
4.5 Isometry, conformal transformation and constant curvature space . 127
4.6 Orthogonal frame field and spin connection 130
4.7 Surfaces and curves in 3-dimensional Euclidean space 137
4.8 The computation of Riemannian curvature tensor 148
4.9 Pseudosphere and Bäcklund transformation 154
Notations and Formulae ... 159
Exercises ... 161

5 Symplectic Manifold and Contact Manifold 163
5.1 Symplectic manifold ... 163
5.2 Special submanifolds of symplectic manifold 166
5.3 Symplectic and Hamiltonian vector fields, Poisson bracket 168
5.4 Poisson manifold and symplectic leaves 170
5.5 Homogeneous symplectic manifold and the reduced phase space ... 173
5.6 Contact manifold ... 176
Notations and Formulae ... 180
Exercises ... 181

6 Complex Manifolds .. 183
6.1 Complex structure of manifolds, almost complex manifolds 183
6.2 Integrable condition of almost complex structure 190
6.3 Hermitian manifold ... 193
6.4 Kähler manifold .. 200
6.5 Connections on complex manifold .. 203
6.6 Riemannian symmetric space, its Kähler structure and nonlinear realization ... 209
6.7 Nonlinear σ-models, soliton solutions and their geometric meaning ... 216
Notations and Formulae ... 227
Exercises ... 230

7 Homology of Manifolds .. 231
7.1 Homotopic mapping and manifolds with the same homotopy type ... 232
7.2 Singular homology group .. 234
7.3 General homology group and universal coefficient theorem 240
content

7.4 Cohomology theory ... 246
7.5 de Rham cohomology theory 249
7.6 Harmonic forms ... 255
7.7 Bi-invariant form on group manifold and invariant form on symmetric space ... 257
7.8 G-structure of manifold and its restriction to the homology group of manifold ... 259
Notations and Formulae ... 261
Exercises .. 262

8 Homotopy of Manifold, Fibre Bundle, Classification of Fibre Bundles ... 263
 8.1 Homotopy group of manifold 263
 8.2 Relative homotopy group and exact homotopy sequence 267
 8.3 Relation between homotopy group and homology group 275
 8.4 Fibre bundle ... 278
 8.5 Principal bundle and associated bundle 284
 8.6 Induced bundle, reduction of fibre bundle 286
 8.7 The homotopy classification of fibre bundles, universal fibre bundle ... 290
Notations and Formulae ... 294
Exercises .. 295

9 Differential Geometry of Fibre Bundle, Yang-Mills Gauge Theory ... 297
 9.1 Connection and curvature on principal bundle 297
 9.2 Connection on associated vector bundle 303
 9.3 Connection on general vector bundle 306
 9.4 Gauge theory, action and Yang-Mills equation 311
 9.5 Local gauge symmetry and current conservation 315
 9.6 Instanton ... 319
 9.7 Yang-Mills-Higgs monopole 324
 9.8 Seiberg-Witten monopole equation 327
Notations and Formulae ... 330
Exercises .. 332

10 Characteristic Classes .. 333
 10.1 Introduction, Weil homomorphism 333
 10.2 Chern class, the splitting principle 337
 10.3 Pontrjagin class ... 343
 10.4 Euler class .. 346
 10.5 Stiefel-Whitney class, orientation and spin structure 347
 10.6 Secondary characteristic class (Chern-Simons form) 351
 10.7 Generalized Chern-Simons forms 357
| Notations and Formulae | 360 |
| Exercise | 362 |

11 The Atiyah-Singer Index Theorem 363
11.1 Introduction, Euler number and the associated theorem | 363 |
11.2 Elliptic differential operator, elliptic complex and its analytic index | 365 |
11.3 Atiyah-Singer index theorem, the symbol bundle and its topological index | 370 |
11.4 Other classical elliptic complex | 373 |
11.5 Twisted elliptic complex | 378 |
11.6 Brief comment on the proof for index theorem, the heat kernel method | 381 |
11.7 Some applications in physics | 386 |
Notations and Formulae | 388 |
Exercise | 388 |

12 Index Theorem on Manifold with Boundary and on Open Infinite Manifold 389
12.1 Introduction | 389 |
12.2 Index theorem for de Rham complex on manifold with boundary | 391 |
12.3 APS index theorem | 392 |
12.4 APS index theorem for spin complex, spectral boundary condition | 395 |
12.5 Index theorem on open infinite manifold | 400 |
12.6 Weak local boundary condition for Dirac operator | 406 |
Notations and Formulae | 410 |
Exercise | 410 |

13 Family Index Theorem, Topological properties of Quantum Gauge Theory 411
13.1 Family index theorem of Dirac operator | 412 |
13.2 Relation among cohomology on orbit space, on connection space and on gauge group | 415 |
13.3 Topological obstruction of variety degree on gauge group and the Čech-de Rham double complex | 418 |
13.4 The cocycle density of gauge group and gauge algebra | 425 |
13.5 Topological properties of 4-dim quantum Yang-Mills theory and \(\theta \)-vacuum | 429 |
13.6 3-dim Yang-Mills theory and topological mass term | 433 |
13.7 Fermion interaction and quantum anomalies | 435 |
13.8 Topological interpretation of quantum anomalies | 441 |
Notations and Formulae | 444 |
Exercise | 446 |
14 Noncommutative Geometry, Quantum Group, and q-deformation of Chern-Characters

14.1 Introduction .. 447
14.2 Linear transformations on the quantum hyperplane, quantum group $GL_q(2)$ and $SU_q(2)$ 449
14.3 Bicovariant calculus on quantum group $SU_q(2)$ 452
14.4 Q-gauge theory in terms of q-BRST algebra 458
14.5 q-Deformed Chern Class 461
14.6 q-Deformed Chern-Simons 462
14.7 q-Deformed Cocycle Hierarchy 465
Notations and Formulae .. 467
Exercise ... 468

Appendix

A Simple Introduction to Set Theory 469
A.1 Basic definitions and notations 469
A.2 Equivalence relations and equivalence classes 470
A.3 Partial Ordering and Total Ordering 470
A.4 Maps .. 471

B Preliminary Topology .. 473
B.1 Metric space ... 473
B.2 General topological space 474
B.3 Connectedness .. 475
B.4 Compactness .. 476
B.5 Product .. 477

C Some Basic Algebraic Structures 479
C.1 Group, ring and field .. 479
C.2 Vector space, module and algebra 480
C.3 Euclidean space ... 483
C.4 Normed algebra and C*-algebra 483
C.5 Homogeneous space .. 483

D Homomorphism of Algebraic Structure and Tensor Algebra 485
D.1 Linear functions and dual spaces, dual linear map 485
D.2 Bilinear functions and tensor products 486
D.3 Direct sum and tensor algebra 488
D.4 Derivator algebras ... 488

E Exact Sequence of Homomorphism 489
Abelian Group 491
F.1 Linear independence and rank 491
F.2 Finite generated groups 492

Stokes' Theorem 493

Quarternion and Milnor Exotic Spheres 497
H.1 Division algebras 497
H.2 Quarternion H 498
H.3 Milnor exotic spheres 499

Generalized Kronecker δ notation 501
I.1 Definition 501
I.2 Contractions of order-p δ notation (p ≤ n) 501
I.3 Contraction of δ and tensors 502
I.4 Generalized Levi-Civita notation 502

n-dimensional Sphere S^n 505

SU(2) Group Manifold 507

S2 Manifold and Hopf Maps 509

Clifford Algebra, Spin Group and its Representations 513
M.1 Clifford Algebra 513
M.2 Spin Group 514
M.3 The representation of $Spin(n)$ 515
M.4 spin(n) algebra module 517

Good Cover and the Nerve of a Cover. Čech Cohomology 519

Symmetric Trace 521

Cohomology with Compact Support and Cohomology on Fibre Bundle, Thom Class 523

K-theory, Topological Invariance of Elliptic Operator 527

Cohomology of Lie group and Lie algebra 529

Some Recursion Relations of Q-BRST Algebra 531

References 534

Index 538
Preface

The developments of physics and mathematics are closely interlinked. In certain respects, mathematics is an important tool for physics, while many significant mathematics problems originate from physics. The relationship between modern theoretical physics and differential geometry is more profound. Physics not only gives new ideas and motivations to modern differential geometry, but also provides powerful alternative methods for geometry. The proof of Atiyah-Singer Index theorem in terms of supersymmetric quantum mechanics\(^1\); Donaldson's analysis of differential structure of \(\mathbb{R}^4\) in terms of the solutions of sourceless non-Abelian gauge field equations\(^2\); and the calculation of Donaldson invariants by Seiberg-Witten in terms of supersymmetric Abelian gauge field with spin\(^3\) are only three of the most prominent examples. On the other hand, in the last few decades, there have been extensive applications of topology and geometry in physics, such as, Riemannian geometry in general relativity\(^4\), Poisson-Lie algebra and symplectic geometry in integrable systems\(^5\), complex geometry and algebraic geometry in conformal field theory and string theory\(^6\), fibre bundle differential geometry in the global analysis of Yang-Mills theory\(^7\) and quantum anomaly\(^8\), etc.. The global and topological analysis gives an impetus to inaugurate many physical idea. All fundamental interactions are gauge interactions, the gauge field potential and gauge field strength identified with the connection and curvature on fibre bundle \(^9\), respectively. In modern quantum field theory and statistical physics, global and nonlinear analysis plays a critical role. The concepts of connection, curvature, characteristic class in differential geometry are showing up in various branches of theoretical physics, and no longer limited to gravity and Yang-Mills theory. For instance, Berry phase\(^{10}\) arises from non-trivial topological properties of parametrical space.

In light of the present situation, this book is written in the hope that it will acquaint our readers and graduate students with some of the basic ideas and methods of modern differential geometry and their applications in physics.

The book is divided into fourteen chapters with another eighteen appendices as introduction to prerequisite topological and algebraic knowledge. The first seven chapters focus on local analysis. This part could be used as an introductional text book for graduate students of theoretical physics. Chapters 8 – 10 discuss geometry on fibre bundle which could be further reference to researchers. The last four chapters deal with the Atiyah-Singer index theorem and its generalization, quantum anomaly, cohomology field theory, and noncommutative geometry, which may give the reader a glimpse of the frontier of current research in theoretical physics.

The first three chapters expound the differential geometry without a metric, in these chapters, three kinds of important differential operators: exterior differential, Lie derivative, and covariant derivative, are introduced. To combine them together,
attention is given to some basic concepts of manifold, mapping, connection and integrability. In chapter one differentiable manifold and tensor field are introduced, and we put emphasis upon the point that tensor fields are geometric entities, independent of the choice of coordinate systems; we emphasize further the coordinate independence of equations. In chapter two, mapping between manifolds and its induced mapping between tensor fields; Lie group manifolds and its invariant vector fields are introduced. In chapter three, we take into consideration additional structures on the manifold: connection and curvature on manifold, though these do not necessarily involve a metric, and analysis of the problem in terms of moving frames are introduced. These are intended to give the readers a visual picture of fibre bundle.

After introducing the connection on manifold, in chapters 4 - 6 we introduce metric structure, symplectic structure, and complex structure on manifold, respectively. In these three chapters, the applications to general relativity, analytical mechanics, symmetric space and integrable systems are also discussed.

Chapter 7 is a critical chapter, from which we start the global analysis on manifold. In chapters 7 and 8, homotopy and homology, which are the fundamental concepts in algebraic topology, are introduced, so are the basic structure and classification of fibre bundles. In chapters 9 and 10, the connection and characteristic class on the fiber bundle are introduced, and we proceed with the global topological analysis in gauge theory. Fibre bundle is the best language for studying the relationship between the global and local properties of manifold.

In chapters 11 - 13, Atiyah-Singer Index theorem, Atiyah-Patodi-Singer Index theorem and family index theorem are introduced briefly. With quantum anomaly as an example, we treat the global analysis in quantum field theory and take account various topological constructions. The last chapter is about non-commutative geometry, quantum group, and q-gauge theory, which are some of the popular topics in current theoretical physics.

At the end of each chapter, a notations and formulae are attached for its summary and reference.

There are many books on differential geometry, and we list some of these which we are more familiar as general references at the end of this book. On the one hand, it is necessary to have an extensive mathematical knowledge, no matter how difficult it is to grasp them immediately for physicists, on the other hand, to the best of our knowledge, these books we known do not go beyond A-S index theorem, and the extension of A-S index theorem (family index theory, index theorem for open and infinity manifold), and their application on quantum field theory are little mentioned. The materials in these areas can only be found in certain articles. Our purpose is to introduce differential geometry, especially the fundamental concept, methods, and results of differential geometry. As for various mathematical terms and definitions, only the most necessary are included, as we never mean to be all-embracing. The straightforward and intuitive approach, which is more acceptable to physicists while not affecting the final mathematical results, has been adopted. References are cited
for the problems discussed, and they are by no means complete, and we apologize to those authors for not mentioning their works. For reader's convenience, the notations and terminology in this book are consistent with the general convention.

Acknowledgement: It is pleasure to thank Profs. Y. S. Duan, M. L. Ge, H. Y. Guo, Z. Q. Ma, X. C. Song, P. Wang, S. K. Wang, K. Wu, L. C. Xu, L. N. Zhang, for our pleasant and effective cooperations, to thank profs. B. L. Hao and C. Y. Zhu for their support and help. We would like to thank D. Mi, B. Wu, M. Xie, F. Z. Yang, Z. X. Yang, Q. R. Zheng, for their translation and arrangement of the manuscript, in particular, Dr. Z. X. Yang's revision and translation in English of the whole book. Without their help, this book is difficult to be completed. This book is supported in part by the National Natural Science Foundation of China.
Chapter 1

Differentiable Manifolds and Differential Forms

In Euclidean geometry, two figures are said to be identical if they overlap completely after an Euclidean movement which does not change the Euclidean distance between two points. All of the Euclidean movements form a group. The Euclidean geometry studies the invariant properties of figures under the action of Euclidean movements. From this point of view Klein gave a definition of geometry in 1871 as follows: Given a set E (called space) and a group G which acts on the space E, the geometry studies the invariant properties of the space E on which the transformation group G acts. Differential geometry studies the invariant properties of differentiable manifolds under the action of diffeomorphism transformations. The major research objects of differential geometry are differentiable manifolds and various tensor fields on them.

1.1 Manifold

Many problems in physics are related to the continuous spaces, such as the usual space-time in kinetics and dynamics, curved space-time in general relativity, phase space in statistical physics, interior space and related base space(ordinary space-time) in gauge field theory, etc.. These spaces have some common properties: they are all continuous spaces and have a definite dimension. To study them, the concept of manifold is introduced. Manifold is the generalization of point, line, surface and other higher dimensional continuous spaces which we are familiar with.

Definition 1.1 Manifold: A real n-dimensional manifold M is a space which is like \mathbb{R}^n locally. More precisely, a real n-dimensional manifold is such a Hausdorff space in which any point has a neighborhood homeomorphic to \mathbb{R}^n.

In the following, we briefly explain some mathematical term in this definition.

1). Real n-dimensional linear space \mathbb{R}^n.

1